Chemical Engineering Thermodynamics
 Quiz 11
 April 7, 2016

An azeotrope of isopropanol (1) and toluene (2) forms at atmospheric pressure (760 mmHg), $80.6^{\circ} \mathrm{C}$, and at 42 weight percent toluene (2). (You will need to convert to mole fraction by considering one gram of the solution has 0.42 grams of toluene and 0.58 grams of isopropanol and that the molecular weights are $60 \mathrm{~g} /$ mole for (1) and $92 \mathrm{~g} / \mathrm{mole}$ for (2).

The boiling point at atmospheric pressure for isopropanol is $82.5^{\circ} \mathrm{C}$ and for toluene is $111^{\circ} \mathrm{C}$. The saturated pressures for isopropanol (1) and toluene (2) at $80.6^{\circ} \mathrm{C}$ are 716 and 300 mmHg from the Antoine equation.
The saturated pressures at $25^{\circ} \mathrm{C}$ are 44.6 and 28.7 mmHg also from the Antoine equation.
a) Use the azeotrope conditions to calculate the one-parameter Margules constant. (Use the isopropanol activity coefficient for the rest of the calculations, but compare with the toluene value.)
b) Why do you think the two values are different? Would it be better to use a twoparameter Margules model? (Remember that the one-parameter model is symmetric in composition.)
c) Make a rough sketch of the P versus composition plot for $80.6^{\circ} \mathrm{C}$.
-Note if it is a positive or negative deviation from Raoult's Law,
-the two vapor pressures and
-the azeotrope conditions.
-Indicate the bubble point and dew point lines and -one tie line below the azeotrope and one above the azeotrope in composition indicating the y and x that are in equilibrium.
d) Make a rough sketch of the T versus composition plot for atmospheric pressure.
-Note if it is a maximum boiling or minimum boiling azeotrope.
-Note the boiling points of the components and of the azeotrope.
e) Determine the bubble point at $25^{\circ} \mathrm{C}$ for an equimolar mixture (pressure and composition).
f) Determine the dew point at $25^{\circ} \mathrm{C}$ for an equimolar mixture. Proceed only to the second iteration and then indicate how the iterations would proceed after that point.
g) Sketch the pressure versus composition diagram at $25^{\circ} \mathrm{C}$ using the values you have for saturate pressure, BP and DP, as well as the value of the activity coefficient to determine the shape of the curve.

$$
y_{i} P=x_{i} \gamma_{i} P_{i}^{s a t} \quad \text { or } \quad K_{i}=\frac{\gamma_{i}^{L} P_{i}^{s a t}}{P}
$$

(1) The oneparameter Margules equation is the simplest excess Gibbs expression.

$$
\frac{G^{E}}{R T}=A_{12} x_{1} x_{2}
$$

$$
\begin{aligned}
& \ln \gamma_{1}=A_{12} x_{2}^{2} \\
& \ln \gamma_{2}=A_{12} x_{1}^{2}
\end{aligned}
$$

$$
\frac{G^{E}}{R T}=x_{1} x_{2}\left(A_{21} x_{1}+A_{12} x_{2}\right){ }^{10}
$$

$$
\frac{1}{R T}\left(\frac{\partial G^{E}}{\partial n_{1}}\right)_{T, P, n_{2}}=\ln \gamma_{1}=n_{2}\left(A_{21}+\frac{n_{2}}{n}\left(A_{12}-A_{21}\right)\right)\left[\frac{1}{n}-\frac{n_{1}}{n^{2}}\right]+n_{2}\left(\frac{n_{1}}{n}\right)\left(\frac{-n_{2}}{n^{2}}\right)\left(A_{12}-A_{21}\right)
$$

$$
\ln \gamma_{1}=x_{2}^{2}\left[\left(A_{21}+\left(1-x_{1}\right)\left(A_{12}-A_{21}\right)\right)+\left(A_{21}-A_{12}\right) x_{1}\right]
$$

$$
\ln \gamma_{1}=x_{2}^{2}\left[A_{12}+2\left(A_{21}-A_{12}\right) x_{1}\right] \text {; similarly } \ln \gamma_{2}=x_{1}^{2}\left[A_{21}+2\left(A_{12}-A_{21}\right) x_{2}\right]
$$

The two parameters can be fitted to a single VLE measurement using

$$
A_{12}=\left(2-\frac{1}{x_{2}}\right) \frac{\ln \gamma_{1}}{x_{2}}+\frac{2 \ln \gamma_{2}}{x_{1}} \quad A_{21}=\left(2-\frac{1}{x_{1}}\right) \frac{\ln \gamma_{2}}{x_{1}}+\frac{2 \ln \gamma_{1}}{x_{2}}
$$

C. 1 MODIFIED RAOULT'S LAW METHODS

The equation that must be solved is: $y_{i} P=x_{\gamma} \gamma_{i} P_{i}^{\text {sat }}$

Bubble P

Bubble T

(Choose one flow sheet.)

Dew \boldsymbol{P}

Dew T

(Choose one flow sheet.)
Option (a)

1. Know y_{i}, P.

Assume Raoult's law for first
T, x_{i} calculation or Eqn. 10.22.

Isothermal Flash

1. Know z_{j}, P, T

Apply shortcut K-ratio method for first K_{i} calculation.
Skip step 2 first time, set x_{i}, y_{i} to force outer loop below to execute at least once.

Answers Quiz II
a) At dreot.je $x_{i}=y_{1}$ so

Say ba $1 g$

$$
x_{\text {irjy }}^{(\alpha)}=\frac{0.967 \mathrm{mb}}{0.457+0.967 \mathrm{mid}} \div 0.679 \text { iso/\%mal (1) }
$$

$$
\operatorname{cuse}_{\substack{\text { ancual } \\ \mathrm{r}_{1}}}^{A_{12}=\frac{\ln (1.00)}{(0.321)^{2}}=0.565 A_{2}=\frac{\ln (2.53)}{(0.87)^{2}}=2.01 .}
$$

$$
\begin{aligned}
& \gamma_{2}=\frac{760 \mathrm{~mm} l_{1}}{300 \mathrm{man} / \mathrm{I}}=2.53 \\
& A_{12}=\frac{\ln \gamma_{1}}{x_{2}^{2}}=\frac{\ln \gamma_{2}}{x_{1}^{2}} \\
& x_{1} \text { is mol froition \& ae how wighthucion }
\end{aligned}
$$

b) The Moigals 1-poianetsMedel wa'd pediet on arehpe at $z=0.1$ nol at 0.679. Soitis an appuxiontin ped to abial ± 1.5 for A_{12}, The 2 poometes a odel is teolly meedel fa lis system.
(z)

d)

e)

$$
\begin{aligned}
& x_{1}=0.50 \quad r_{1}^{2}=\operatorname{exy}\left(0.505(0.5)^{2}\right)=1.15 \\
& P_{b \rho}=x_{1} \gamma_{1} P_{1}^{\text {nat }}+x_{2} \gamma_{2} P_{i}^{\text {nat }}
\end{aligned}
$$

$$
\begin{aligned}
& =565 \text { 42.0 mall } 4 \\
& \begin{array}{l}
y_{1}=\frac{x_{1} r_{1} p_{1}^{10 t}}{p}=\frac{0 . r(1.5)}{y_{2}=0.390}=0.600
\end{array} \\
& y_{2}=0.390
\end{aligned}
$$

f)

$$
y_{i}=0.50
$$

(1) $\gamma_{\text {inile }}=1$ Racultilaw
(2) $P_{\text {ining }}=\frac{1}{\frac{0.5}{K_{1} P_{1}^{\text {rot }}+}+\frac{0 . r}{R_{2} P_{i} \text { ial }}}=\frac{1}{\frac{0 . r}{44.6}+\frac{0 . r}{2 \varepsilon .7}}=34.9$ mank
(3) Calculub $x_{1} x_{2}$

$$
\begin{aligned}
& x_{1}=\frac{0.5 p}{\gamma_{i} 44.6 \mathrm{~mm}}=0.391 \\
& x_{2}=\frac{0.5 p}{\gamma_{1} 28.7}=0.608
\end{aligned}
$$

(4) Calculeb γ is

$$
\begin{aligned}
& \gamma_{1}=\operatorname{axp}_{x}\left(A_{2} x_{2}^{2}\right)=\left(0.565(0.008)^{2}\right)^{=}=(0.2 D q)=1.23 \\
& \gamma_{2}=\exp \left(A_{12} x_{1}^{2}\right)=0 \operatorname{Drp}\left(0.505(0.391)^{2}\right)=1.09
\end{aligned}
$$

$$
\begin{aligned}
& \text { (5) } \operatorname{cet} P=\frac{1}{0.5}+\frac{a . r}{1.23(48.0)}+\frac{39.8 \mathrm{~mm}}{1.09(28.7)} \\
& L_{0}\left(l . \mathrm{k}_{\mathrm{e}}(2)\right. \\
& 0.5(39.8)
\end{aligned}
$$

	A	B	C
Isopropanol	8.88	2010	253
Toluene	6.95	1340	219
$10^{\wedge}\{\mathrm{A}-\mathrm{b} /(\mathrm{t}+\mathrm{c})\}$			

Azeotropes of isopropanol, b.p. $=82.5^{\circ} \mathrm{C}$

2nd Component	b.p. of comp. (${ }^{\circ}$ C)	b.p. of mixture (${ }^{\circ}$ C)	\% by weight	spef. grav
with various esters				
ethyl acetate	77.1	75.3	75	0.869
isopropyl acetate	91.0	81.3	40	0.822
with various hydrocarbons				
benzene	80.2	71.9	66.7	0.838
toluene $\ddagger[10]$	110.8	80.6	42	

a) Determine the Azeotrope pressure and composition at $25^{\circ} \mathrm{C}$ using
$\mathrm{P}_{\mathrm{sat} 1} / \mathrm{P}=\exp \left(\mathrm{A}_{12}\left(1-\mathrm{x}_{1}\right)^{2}\right)$ and $\mathrm{P}_{\mathrm{sat} 2} / \mathrm{P}=\exp \left(\mathrm{A}_{12} \mathrm{x}_{1}{ }^{2}\right)$. (Two equations and two unknowns, P and $x 1$, solve by trial and error. For the quiz, P is 256.4 mmHg and just find x_{1}.)

